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Abstract-When Navier-Stokes equations are solved on a non-staggered grid, the problem of checker board 
prediction of pressure is encountered. Over the last ten years, this problem has been cured by what is 
known as the momentum interpolation formula which is applied for evaluation of the cell-face velocities. 
In this paper two contributions are made. Firstly, it is shown that the momentum interpolation formula 
is a special case of a more general interpolation relationship that can be derived from a physical principle. 
In this sense, the relationship does not provide a unique formula for the interpolation of the cell-face 
velocity. In order to achieve unique interpolation practice, the second contribution of this paper relates 
to pressure-gradient interpolation. The results obtained from pressure-gradient interpolation compare 

extremely favourably with those obtained using staggered grid. 

1. INTRODUCTION 

1.1. The problem considered 
THE SOLUTION of Navier-Stokes equations by ‘con- 
trol-volume’ based finite-difference methods requires 
that the velocities that are used to satisfy the con- 
tinuity equation (from which the pressure-distribution 
is determined) should also simultaneously satisfy the 
momentum equations. When this requirement is 
explicitly implemented, there results the now well- 
known staggered grid arrangement (Fig. l(a)) in 
which the velocities are stored at the cell-faces, 
whereas the pressures (and other scalars) are stored 
at the cell-centres or the main grid nodes. 

In the computation of three-dimensional flows in 
complex geometries using curvilinear body-fitted 
grids, several practical advantages are achieved by 
employing a ‘non-staggered’ grid arrangement (Fig. 
l(b)), in which the velocities and the pressure are 
stored at the same location, that is, at the grid node. 
Though practically attractive, the arrangement is 
beset with one major difficulty. Thus when (a) the 
cell-face velocities are linearly interpolated between 
neighbout-ing nodal velocities, and (b) the pressure- 
gradient appearing in the nodal momentum equations 
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is represented by straightforward central-difference 
approximation, the predicted pressure distribution 
shows checkerboard or zig-zag variation [I], whereas 
the predicted velocities are often nearly accurate. This 
difficulty is of course associated with the extent of 
coarseness of the grid. The finer the mesh size, the 
smoother is the predicted pressure distribution. 

The cure for the checkerboard prediction of pres- 
sure was first proposed by Rhie and Chow [2], in 
which the cell-face velocities are interpolated via what 
is called the momentum interpolation practice rather 
than being linearly interpolated as mentioned in (a) 
above. The pressure-gradient term, of course, is evalu- 
ated as in (b) above. This practice has been followed 
by several investigators over the last ten years (see, 
for example, refs. [3-61). There are, however, some 
inelegant aspects to this method, and are described in 
Date [7]. 

1.2. The present contribution 
The purpose of this paper is two-fold : 

(i) To provide a physical basis to the cell-face vel- 
ocity interpolation, and hence to demonstrate that 
effective interpolation can in fact be achieved by a l 

t 

N 

FIG. I. Staggered (a) and non-staggered Ih) grid arrangement. 
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NOMENCLATURE 

AP, AE, A W, AN, AS coefficients in the 
finite-difference equation 

P pressure 
u x-direction velocity 
V y-direction velocity 
S source term in the finite difference 

equation 
T temperature. 

Greek symbols 
P weighting factor 
P viscosity 
P density 
4 general variable. 

SufIixes 
C correction velocity 
eff effective value 
n, s, e, w cell-face locations 
P, N, S, E, W grid node locations 
f refers to cell-face 
m arithmetic mean value 
X x-direction 
Y y-direction. 

Acronym 
RHS right-hand side. 

much simpler formula than the one proposed by Rhie where F, and F, represent the required interpolation 
and Chow [2]. formulae. 

(ii) To demonstrate that the problem of checker- 
board prediction of pressure can also be eliminated 
by interpolating the pressure-gradient in the nodal 
momentum equations, while still evaluating the cell- 
face velocities by linear interpolation. 

Equations (l)-(3) are converted into a set of linear 
algebraic equations by control-volume based finite- 
differencing. The linear set can be written in a gener- 
alized form as : 

The second contribution, it will be shown, is more 
attractive than the first one. 

APP~P = AEP~E+A WP& 

+ANP~N+ASP~S+S,, (6) 

where 

2. CELL-FACE VELOCITY INTERPOLATION 

2.1. The problem 
In this method, the nodal velocities (u, v) are dis- 

tinguished from the cell-face velocities (u/, v,), so 
much so that, for greater clarity, one may write the 
Navier-Stokes equations as :t 

P 
[ 
!g+!w]= 2e+p[$+$] (2) 

P 
[ 
!!p+!m]= -2!+p[$+$]. (3) 

The above equation set has three equations, but five 
unknowns (u,, v,, u, v, and p). In order to ‘close’ the 
mathematical problem, relationships of the following 
form are required : 

UJ = F”(U, GP), (4) 

v/ = F”;;(U, KP), (5) 

(7)$ 

and 

AP, = AE,+AW,+AN,+AS,. (8) 

The source terms S, for each 4 are given in Table 
1 below: 

Table I. S, in equation (6) 

Equation 

t For the purposes of discussion, throughout this paper, 
the Navier-Stokes equations are written for a two-dimen- 
sional steady flow with uniform properties and without body 
forces. 

$.To preserve clarity in the discussion, coefficients per- 
taining to central-difference form are given. Also grid 
spacings Ax and Ay are assumed to be unifo,rm. 

5 Evaluation of pressures at the domain boundaries require 
special treatment as described in the Appendix. 

For uniform grid-spacing, the cell-face pressures are 
written as : 

Pw = wPw+P,), PC = wP,+PP) 

P* = cwP,+PP), Pn = wPlv+PP). m 

The above practice removes appearance of pp in the 
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FIG. 2. The physical basis of cell-face velocity interpolation. 

1915 

finite-difference equations for up and up. This is called rule (i) : the correction velocities represent the effect 
the velocity-pressure decoupling. of ‘departure from linearity’ of pressure ; 

The coupling between z+, up, and pp, however, can rule (ii) : the mean velocities correspond to the linear 
be restored by writing, variation of pressure. 

and 

Uflv = %nw = 0.5(z++?+up) 

l.$ = u,, = 0.5(u,+up) 

u/s = 4Iu = 0.5(u,+u,) 

Wd 

(lob) 

(1 la) 

In order to understand the application of these 
rules, consider Fig. 2 and concentrate attention on the 
w-face. The exact finite difference equation for uJW then 
is : 

vfi = V”, = 0.5(v,+v,), (Ilb) 

where the suffix ‘m’ denotes mean values between 
neighbouring nodal values. 

Now, since finite-difference equations for uW, uE, us 
and vN will contain pp. coupling between u,, vP and 
pP is established. Experience, however, has shown that 
this coupling is very weak and in fact results in zig- 
zag variation of pressure [l], while the predicted vel- 
ocities are often nearly accurate. 

Equations (10) and (11) represent the cell-face vel- 
ocities by linear interpolation and are the simplest 
forms of equations (4) and (5). They do not contain 
pressure p in an explicit manner. 

u,w=~+-$pw-pp). (14) 
W’ w 

Now, rule (ii) will be applied in two ways. In the 
first (denoted by suffix l), departure from linearity of 
pressure at P will be considered. Then, 

WPA~ AY 24 
““‘-AP, w 

- ~ + -&Pw-Pmd. (15) 

In the second evaluation (denoted by sutTix 2) de- 
parture from linearity of pressure at W will be con- 
sidered. Then : 

=&I, AY 
hv2 = ~ + -&h.KPP). 

AP, w 
(16) 

Subtraction of (15) and (16) from (14) gives : 
2.2. The cure 

It is possible to represent the cell-face velocity as 
comprising of two parts ; a mean part and a correction 
part, so that 

Ii/e = %n,+u,, (124 

Ufw = Kmv + uav Pb) 

qii = &I” + 0, (134 

u/s = hs+~cs; (13b) 

and 

u/w - %lv I = g- @mxP -Pph (174 
w 

where suffix ‘c’ denotes the correction part. 
Now, to evaluate the correction part, Date [7j has 

postulated two rules : 

Uflv - %lv2 = ~@w-Pmxwh 
w 

where 

PmxP = 0.5(P,+P3 

and 
Pmxw = 0.5@ww+PP). 

One may now require that : 

(17b) 

(Wt 

UW 

giJeFi,‘y 0.5 (ps+pN). 
refers to mean pressure at P in x-direction. pmvP is 

1 At present, there appears to be no independent means of 
determining /I. 

where /l can normally be expected to take a value 
between 0 and 1. If jl = 0.5 is chosen$ then : 
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u,,. = u/,.-Uu,” 

= O.S~[(P,-p,,)+(P,,--P,)l. (20) 
IV 

Substituting for Pmxp and P,,w, and after rearrange- 
ment, 

24,“. = Uf”, -u,,. = g [@w-PP) 
IV 

-OS(p,.--p,) -OS(p,.,.-p..)]. (20a) 

Three comments are now pertinent : 

(i) Equation (20a) confirms rule (i) ; if the pressure 
variation were to be linear, then uz,,, will indeed be 
zero. u,,. will also tend to zero when (Ax, AJJ) -+ 0, 
since this further augments the AP-coefficient. 

(ii) Equation (20a) is the formula proposed by Rhie 
and Chow [2] which is known as the momentum 
interpolation formula. It corresponds to /3 = 0.5. 

(iii) Date [A has shown that if a slight mathematical 
inconsistency is introduced in equations (15) and (16), 
then with /l = 0.5, the resulting formula is the same 
as that used by [3-51. 

Formulae for u,, v, and v, can be derived in the 
same manner. Thus, an expression for u,, for 
example, will be : 

where 

PmxE = 0.5@P+P,). (22) 

The formulae derived obey the consistency constraint. 
It will be shown in Section 4 that smooth variation of 
pressure are predicted for any value of p. The formula 
with fl = 1.0 or /l = 0 is much simpler than the 
momentum interpolation formula normally used. 

2.3. Some further comments 
(i) The cell-face velocity interpolation does not 

result in a unique formula since jl can take arbitrary 
values. In fact, [6] represents cell-face velocities as : 

u,= u,+c,u, CW 

Vf = v,+c,v, (23b) 

where in the particular problem considered by him, 
c, was chosen between 0.1 and 0.5 with /3 = 0.5. In 
the present derivation, c, is taken as unity. 

(ii) Since u, and v, form a part of the convective 
coefficient (see equation (7)) with the effect of damp- 
ing oscillations in the predicted pressure, they are 
often described as artificial viscosity or damping 
terms. Note, however, that u, and v, can be both 
positive or negative. 

(iii) With c, = 1, it is tempting to substitute equa- 
tion (23) in equations (l)-(3). Equation (2), for exam- 
ple, can then be represented as : 

p 2!!g+~]=2!+,[c!+$] 
[ 

[ 

a(w) a@$) 
-P x+- 1 ay 

(24) 

Now, if both equations (2) and (24) are finite-differ- 
enced by upwind differencing, the resulting forms will 
not be the same since, 

b/I # Iuml+ M. (25) 

Thus, although finite-difference forms of equation 
(24) also yield smooth prediction of pressure, this 
further contributes to the non-uniqueness of the cell- 
face velocity interpolation. 

(iv) Momentum equations written in the form of 
equation (24) can also be viewed as an effective pres- 
sure-gradient method in which the convecting vel- 
ocities are arithmatic mean velocities and source terms 
are : 

1 . (26) 

A unique representation of the effective pressure- 
gradient, however, is possible as will be shown in the 
next section, 

3. PRESSURE-GRADIENT INTERPOLATION 

3.1. Evaluation of effective pressure gradient 
On the non-staggered grids, nodal velocities (u. for 

example) are represented as : 

z&&lP AX& ap 

UP=APp--- AP, ax p 

&ikuk(w AX& ap 

UW=AP,--- APw aX w 

(27) 

(28) 

and 

i%I,&lE AX& ap 

UE=APE--- AP, ax: (29) 

On the staggered grid, however, the cell-face velocities 
u,~ and u,~ are represented as : 

%ikukjW AX& ap 
--_-- 

‘fw - Ap AP, ax w w 
(30) 

and 

CA,+,Je AxAy ap 
U/e = ___ - - - Ape AP, ax: (31) 

Now, on the non-staggered grids, we wish to write : 

u/w = 0.5(uw+up) (32) 

Ufe = o.5(uE+up). (33) 

Substituting equations (27)-(29) in equations (32) 
and (33), we have : 



in the usual manner, and the cell-face velocities 
required to calculate convective components of 
coefficients Ak are evaluated as mean velocities. 

1 ap -- 
P +AP,ax w II (34) 

Finite-difference representation as above is found 
to remove the problem of checkerboard prediction. 

and 

l$ = 0.5 

3.2. Comments on equations (38) and (39) 
1. If all the AP-coefficients on the RHS of equation 

(38) were equal and the pressure variation in the x- 
direction was truly linear, then the RHS of equation 

i ap II 
(38) will still equal (P, - P<)/(AxAP,). But then for 

+ApBdx.. (35) 
such a case, the problem of checkerboard pressure 
prediction does not arise [7, 81. 

Comparing the pressure gradient terms in equations 
2. The RHS of equation (38) is not a result of a 

(34) and (35) with those in equations (30) and (31), 
straightforward assumption of a cubic polynominal 

respectively, we derive that : 
in x for 

1 dDl 
-2 

(36) APax. 

and 

Now adding equations (36) and (37), we have : 
+~[-$(~~)p-2&&9 (42) 

Tern (ii) Tern (iii) 

where Term (i) is evaluated by central-difference as 
usual, Term (ii) is evaluated by central-difference 

(38) between x, and x, and Term (iii) is evaluated likewise 
between xE and xW. 

between xW Q x < xB. In fact, it is given by : 

(37) 
RHS of equation (38) = $ g 

P P 
Tern (i) 

This then represents the effective pressure gradient at 3. Term (ii) and Term (iii) in equation (42) may 

nodal position P in terms of the pressure-gradients at thus be viewed as a correction over the usual central 

its neighbours. This representation corresponds to the difference formula for (dp/ax)l,. This correction 

momentum satisfying cell-face velocities being rep- becomes negligible when : 

resented as the arithmetic mean of the nodal velocities. (a) (Ax, Ay) --t 0, since the AP coefficients are also 
Similarly, the effective pressure gradient in the y- then augmented, 

direction is given by : 1 ap (b) - - is constant or linear in the range 
AP ax 

xw < x < x,. 

Finally then, the finite-difference equations for up and 
representation of the cell-face velocities as a mean of 
the nodal velocities. 

up are represented as : 

-kUkip up = ~ -Ax Ay 
APP 

[RHS of equation (38)J 4. RESULTS AND DISCUSSION 

(40) 4.1. Manner of presentation 
It is clear from the foregoing discussion that there 

and are really three alternatives when Navier-Stokes equa- 
tions are solved using non-staggered grid. These alter- 

~-‘h?k~p up = ___ -Ax Ay [RHS of equation (39)], 
natives pertain simultaneously to : 

APP (a) evaluation of the cell-face velocity ; 
(41) (b) evaluation of the nodal pressure gradient. 

where various pressure gradients in the RHS of equa- The three alternatives are shown in Table 2. 
tions (38) and (39) are evaluated by central-differences The alternatives are auolied to solvinfr two one- ‘ 1 
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4. Equation (42) is different from equation (26), 
and in turn provides a unique representation of the 
effective pressure gradient that corresponds to the 
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Table 2. Alternatives for non-staggered grid calculations 

Alt. 1 Alt. 2 Alt. 3 

Pressure-gradient 

Cell-face velocities 

Remarks 

Central-difference Central-difference 

Linear interpolation Complex interpolation 

1. Produces zig-zag I. Removes zig-zag 
variations of pressure unless variation of pressure 
when pressure is truly 2. Complex evaluation of 
linear or when extremely fine cell-face velocities which 
mesh size is used must be stored. The 

evaluation is not unique 
3. Cell-face velocities must 
be corrected following 
solution of pressure 
correction equation 
4. The extent of agreement 
with the staggered grid 
pressure prediction 
depends on the value of /I 

By interpolation 

Linear interpolation 

1. Removes zig-zag variation 
of pressure 
2. Simple evaluation of cell- 
face velocities that need not be 
stored 
3. Cell-face velocities not 
corrected following solution 
of pressure correction 
equation 
4. Predicted pressure variation 
agrees well with the 
staggered grid pressure 
distribution 

dimensional problems and two two-dimensional 
problems. In alternative 2, two values of /I are used, 
that is, /I = 1 and 0.5 ; the latter value corresponds 
to the momentum interpolation formula of [2]. The 
solutions are compared with exact solutions and/or 
staggered grid solutions as applicable. The exact solu- 
tions are given by Date [fl. 

4.2. Solution procedure 
Unlike what is described by equation (7), the 

coefficients in the finite-difference equations were 
evaluated by upwind difference. The pressure-dis- 
tribution was determined by solving the pressure cor- 
rection equation as described in ref. [9]. The equation 
was solved by using the SIMPLEC algorithm [lo]. 
The set of finite-difference equations for all variables 
were solved by the Gauss-Seidel point-by-point pro- 
cedure. Direct under-relaxation or false transient 
method were used to ensure stable convergence. 
Convergence was checked by the Residual Source 
criterion. 

4.3. One-dimensional problems 
Problem 1. Constant mass source without momentum 

source. Figure 3(a) depicts the problem considered. 
The exact velocity variation with x is linear, where- 
as the pressure variation is parabolic. Present com- 
putations were performed with 10 nodes. When 
Alternative 1 is used, the predicted pressure (Fig. 
3(c)) shows zig-zag variation although the predicted 
velocity (Fig. 3(b)) is accurate. The results obtained 
with Alternative 2 (/I = 1 and 0.5) and Alternative 3 
again predict accurate velocities and the predicted 
pressures almost coincide with those predicted by the 
staggered grid solution. When the grid is refined, 
the solutions (not shown) with Alternative 2 and 
Alternative 3 were found to agree with the exact solu- 
tion. With an extremely fine grid, even Alternative 1 
predicted accurate pressure-distribution. 

Problem 2. Discrete momentum source without mass 
source. In this problem, shown in Fig. 4(a), a momen- 
tum source of uniform strength is applied over 
0.4 < x < 0.6 (i.e. one grid node distance for 10 grid 
nodes computation). Thus, although the velocity 
is constant throughout the domain, the pressure 
shows discontinuous variation. Again when Alter- 
native 1 is used, the predicted pressure variation (Fig. 
4(c)) is zig-zag and in poor agreement with the exact 
solution. With Alternative 2, results from fl = 0.5 are 
somewhat better than those from fi = 1. Except for a 
minor undershoot at x = 0.9, results from Alternative 
3 show very close agreement with the exact solution. 
The predicted velocities (Fig. 4(b)) are in excellent 
agreement with the exact solution although only 10 
nodes are used. When the grid was refined, predictions 
with all the alternatives demonstrated close agreement 
with the exact solution for pressure. 

4.4. Two-dimensional problems 
Problem 1. Square cavity problem with one moving 

wall. Computations for this well-known problem were 
performed with a 10 x 10 grid. 

Figure 5(a) shows the comparison of the presently 
predicted u-velocity profile at x = 0.55 with the pre- 
dictions obtained with staggered grid since exact solu- 
tions are not available. The staggered grid results are 
interpolated between those computed at x = 0.5 and 
0.6. The present results with all alternatives match 
excellently with the staggered grid results. 

Differences in the predictions, however, were 
observed in respect of the pressure prediction (Fig. 
5(b)). Results with Alternative 1 show zig-zag vari- 
ation as would be expected particularly in the region 
where the pressure variation considerably departs 
from linearity. With Alternative 2, results from /I = 1 
are closer to the staggered grid results than from 
/3 = 0.5. Results from Alternative 3 are again close 
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FIG. 5. (a) u/uv at x = 0.55-square cavity problem. (b) Variation of pressure--square cavity problem. 

to the staggered grid results. Both Alternative 2 and 
Alternative 3 identify the zero p* point at y ~0.65. 
The agreement between staggered grid results and all 
the alternatives improves when the grid is refined. 

Problem 2. Buoyancy-driven flow in a corner. This 
problem has been devised by Shih and Ren [l l] and 
has an exact solution when the source term in the 
energy equation and the boundary conditions are 
given by prescribed algebraic relations. In this 
problem, equations for u, v and Tare solved. At very 
high Rayleigh number (Ra = 1000 in the present case) 
and Prandtl numbers (Pr = 1 in the present case), the 
pressure variation in the y-direction is essentially lin- 

ear and that in the x-direction is negligible. The pres- 
ent computations have been performed with a 10 x 10 
grid. . 

Figure 6(a) shows the predicted u and v profiles at 
x = 0.55. The predictions from all alternatives match 
excellently with the exact solutions. The same was also 
found (not shown) with staggered grid computations. 

Figure 6(b) shows the predicted pressure variation 
at x = 0.55. Since the exact pressure variation is essen- 
tially linear, predictions with all alternatives match 
excellently with the exact solution. Thus the validity 
of rule (ii) in Section 2.2 and that of comment (1) in 
Section 3.2 is confirmed. 
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(a) Pr=l.O , Ra=lOJ 

FIG. 6. Buoyancy-driven 

5. CONCLUSIONS 

1. In this paper, it is shown that there are three 
alternatives to solving Navier-Stokes equations on a 
non-staggered grid. The relative merits of these alter- 
natives are shown in Table 2. 

2. Over the last ten years the problem of checker- 
board prediction of pressure has been eliminated only 
by Alternative 2 with /I = 0.5. In this paper it is shown 
that Alternative 2 does not provide unique inter- 
polation formulae and the extent of agreement 
between staggered grid results and the results of this 
alternative depend upon the chosen value of /I. In the 
square cavity problem, for example, /3 = 1 performs 
better than p = 0.5. 

3. In this paper, Alternative 3 is newly proposed. 
The pressure gradient interpolation that corresponds 
to linear interpolation of the cell-face velocity is 
unique. The results from this alternative compare 
extremely favourably with the staggered grid results. 
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APPENDIX 

Neor-boundory node evoluolion of effective pressure-grodienl 
With reference to Fig. Al, where the boundary at x = 0 is 

shown, the effective pressure-gradient at near boundary node 
P and near-near boundary node E are evaluated as : 

AtP: 

AfE: 

4. T. F. Miller and F. W. Schmidt, Use of a pressure- Here, the RI-IS of equation (38) is used. Thus : 
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x=0 The (@/ax) IP on the RHS of equation (A2) is evaluated as : 

FIG. Al. Near-boundary nodes. 

642) 

aP 
ax, = (P-IL)/(~AX/~) (A3) 

where 

8, (A4) 

In either evaluations (A2) or (A4), the value of (@/8x)1, is 
provided as the boundary condition. Both evaluations pro- 
vide nearly identical results. 


